Arfaptin-1 Negatively Regulates Arl1-Mediated Retrograde Transport

نویسندگان

  • Lien-Hung Huang
  • Wei-Chung Lee
  • Shu-Ting You
  • Chia-Chen Cheng
  • Chia-Jung Yu
چکیده

The small GTPase Arf-like protein 1 (Arl1) is well known for its role in intracellular vesicular transport at the trans-Golgi network (TGN). In this study, we used differential affinity chromatography combined with mass spectrometry to identify Arf-interacting protein 1b (arfaptin-1b) as an Arl1-interacting protein and characterized a novel function for arfaptin-1 (including the arfaptin-1a and 1b isoforms) in Arl1-mediated retrograde transport. Using a Shiga-toxin subunit B (STxB) transportation assay, we demonstrated that knockdown of arfaptin-1 accelerated the retrograde transport of STxB from the endosome to the Golgi apparatus, whereas Arl1 knockdown inhibited STxB transport compared with control cells. Arfaptin-1 overexpression, but not an Arl1 binding-defective mutant (arfaptin-1b-F317A), consistently inhibited STxB transport. Exogenous arfaptin-1 expression did not interfere with the localization of the Arl1-interacting proteins golgin-97 and golgin-245 to the TGN and vice versa. Moreover, we found that the N-terminal region of arfaptin-1 was involved in the regulation of retrograde transport. Our results show that arfaptin-1 acts as a negative regulator in Arl1-mediated retrograde transport and suggest that different functional complexes containing Arl1 form in distinct microdomains and are responsible for different functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio011262 1..7

The generation of neuronal morphology requires transport vesicles originating from the Golgi apparatus (GA) to deliver specialized components to the axon and dendrites. Drosophila Arfaptin is a membrane-binding protein localized to the GA that is required for the growth of the presynaptic nerve terminal. Here we provide biochemical, cellular and genetic evidence that the small GTPase Arl1 and t...

متن کامل

The guanine exchange factor Gartenzwerg and the small GTPase Arl1 function in the same pathway with Arfaptin during synapse growth

The generation of neuronal morphology requires transport vesicles originating from the Golgi apparatus (GA) to deliver specialized components to the axon and dendrites. Drosophila Arfaptin is a membrane-binding protein localized to the GA that is required for the growth of the presynaptic nerve terminal. Here we provide biochemical, cellular and genetic evidence that the small GTPase Arl1 and t...

متن کامل

Bio011262 947..953

The generation of neuronal morphology requires transport vesicles originating from the Golgi apparatus (GA) to deliver specialized components to the axon and dendrites. Drosophila Arfaptin is a membrane-binding protein localized to the GA that is required for the growth of the presynaptic nerve terminal. Here we provide biochemical, cellular and genetic evidence that the small GTPase Arl1 and t...

متن کامل

Structural basis for membrane binding specificity of the Bin/Amphiphysin/Rvs (BAR) domain of Arfaptin-2 determined by Arl1 GTPase.

Membrane-sculpting BAR (Bin/Amphiphysin/Rvs) domains form a crescent-shaped homodimer that can sense and induce membrane curvature through its positively charged concave face. We have recently shown that Arfaptin-2, which was originally identified as a binding partner for the Arf and Rac1 GTPases, binds to Arl1 through its BAR domain and is recruited onto Golgi membranes. There, Arfaptin-2 indu...

متن کامل

Localization and Activation of Ras-like GTPases

Small GTP-binding proteins of the Rab and Arf (ADP-ribosylation factor) families play a central role in the membrane trafficking pathways of eukaryotic cells. The prototypical members of the Arf family are Arf1–Arf6 and Sar1, which have well-characterized roles in membrane traffic or cytoskeletal reorganization. However, eukaryotic genomes encode additional proteins, which share the characteris...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015